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AN ITERATIVE METHOD FOR THE NUMERICAL 
INVERSION OF LAPLACE TRANSFORMS 

CRISTINA CUNHA AND FERMIN VILOCHE 

ABSTRACT. We present an algorithm for the numerical inversion of Laplace 
transforms that is a particular case of the iterated regularization method pro- 
posed by Vainikko in 1982. To construct the finite-dimensional space, we use 
Laguerre polynomials. Error bounds for the approximations are derived. 

1. INTRODUCTION 

Let X = L2 (R+) be the weighted Lebesgue space associated with w(t) = 
e-t, Y = L2([c, d]), d > c > 0 and A: X -- Y the Laplace transform 
operator, 

( 1 ) (Ax)(s) = J e-stx(t) dt = y(s). 

As is known, the problem of solving (1), for a given y E Y, is ill-posed. The 
problem of determining A+y, where A+ is the generalized inverse of A, is 
still ill-posed: the solution depends discontinuously upon y. 

If we only know the perturbed data y6, with 

(2) IlY - Y-IY < l , 
then one must use "regularization methods". This is a family of operators RN: 
Y -+ X, indexed by some regularization parameters N, together with some 
strategy to choose the parameter such that RNY6 is an approximation to A+y. 
There are also other kinds of perturbations when, instead of the operator A, 
we use an approximation AN such that I|AN - All < IN. 

In this paper, we use the arguments presented by Vainikko, in [6], to design 
an algorithm for the inversion of the Laplace transforms of data with noise. The 
Laplace transform methods are helpful techniques for differential and integral 
equations; however when discretization is required to solve the problem in the 
Laplace domain, errors are introduced. Similar situations arise when we deal 
with the Laplace inversion of scientific measurements or observations. 

2. THE LAGUERRE APPROXIMATIONS 

If the data are only imprecisely known, that is, only y3 E Y is available 
satisfying (2), we can use the implicit successive approximation method [4] 
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(3) xk = (AI + A*A)l(Axkl+ A*y), A > 0, 

where A* is the adjoint operator of A. 
Let V1 C V2 C * . be a sequence of finite-dimensional subspaces of X where 

VN is spanned by the Laguerre polynomials of degree < N [1]. The Laguerre 
polynomials, 4i(t), are such that 

J e-tqi(t)qj(t) dt =ij 

and they form a complete set in L2 (R+) [2, for example]. We will denote by 
PN the orthogonal projection of X onto VN and AN = APN . 

In the finite-dimensional subspace VN, we define the approximation 
N 

XN = Zai?ib(t) 
1=1 

such that 

((RI + A*AN)Xk+1 , qj) = (AxkN + A* ay ,qj), j = 0 N' A > 0 

where (,*) is the usual inner product in X. 
Let yi(s) E Y be the Laplace transform of qi(t). As we know, 

Xi(t) =s(k) k!t 

so that 

vi(s= j e- Xi(t) dt= z (L) ( I) =1(1--) 
k=O 

With these functions we construct a matrix M, 

Mij /i (s) y1j(s)ds= ji (1- I) ds= 

where e = (1 - c)/c and d = (1 - d)/d. If we define a vector f, 
Id 

- fi = yJ Y(s)Vi (s) ds , 

the variational formulation of the implicit scheme (3), in VN, will be 

(4) (Al + M)ak k= ak-i + f. 

For a given A > 0, we can state the Procedure 
1. Do the Cholesky decomposition LLT = M + RI; 
2. a' = 0 

solve the system LLTak = aak-l + f, k = 1, 2. 
We must observe that, in this process, the regularization is an important 

feature. The condition number of M becomes insupportable as N increases; 
for example, if N = 15, the condition number of M is 0(1019). 

By direct calculations we can show that the adjoint operator A* is, in this 
case, 

Id 

(A*v)(t) = et etsv (s) ds. 
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Under the limitation c > I it can be shown that A*v E L2 (R+). Also, we 
can see that z(t) = (A*v)(t), v(s) E Y, is an analytical function, and for 
k=0, 1,... 

d 
(5) z(k)(t) - 1 e-t(s-)(1 -_s)kv(s) ds. 

3. ERROR BOUND ESTIMATES 

Assume that the data are on the interval (c, d), with c > and, as before, ~~~~~~~~~~~~~~ 
let e = (I -c)/c and d = (I - d)/d. 

Lemma. Let c > I and a= max{le1, id }; then a< 1 and 2 

a (N+I) 
/N = IIA -ANII < V2 

(N2)1/2 

Proof. We know that 

IIjA - ANII = IIA(I - PN)II = |I(I - PN)A*II = sup {jI(I - PN)A*VIIX}. 
lv 11=1 

Let z(t) = (A*v)(t), v e Y, such that jivIly = 1 . Then 

N 

I(I - PN)A*V11X = ||(I - PN)z(t)IIx = z(t) - bi i(t) 
1=1 x 

where bi are the Laguerre-Fourier coefficients of z(t). The next step is to 
calculate the rate of convergence of the Laguerre-Fourier approximants. We 
will use a basic property of the Laguerre polynomials [1]: 

e ~ ~ k=0I,d. e-tOk(t) = k! d(tke-t) , k = 0, I,.. 

By successive integration by parts, and the last equation, we get 

bk = j et z(t) k(t)dt = 1)k 
oo 

e ttkz(k)(t)dt. 

Using (5) and the Laplace transform of tk, we obtain 

(6) bk ()k dk 
V 
v(s)(l5S)k j e Sttkdtds 

(7) 1 k v (s) d) j 

By the Schwarz inequality, 

(8) IbkI2 < {j2 (-) ds} IIV112 

(9) { (k2k+l d 2k+1} [y(k)]2k(c-d), 
2k + I 
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and y(k) e (d, e ) from the mean value theorem. But -1 < (1 - x)/x < 1, if 
x > o, SO that -1 < d < y(k) < e < 1. If we choose a = max{le l, dIl}, we 
have a < 1 and 

oo oo~~01 2(N+1) 

Z b?( < (-d) E a2i=(C-d) a 

k=N+ 1 i=N+ 1 

and the lemma will follow. o 

The method of successive approximations (3) is familiar for ill-posed prob- 
lems [3-6]. In particular, Theorem 1 in [6] is concerned with "a priori" speci- 
fication of k. It claims that if 

(i) y E R(A), 
(ii) x+ E R([A*A]PI2), where x+ is the solution of (1) closest to 0, 

(iii) k = di (d + iN) -21(p+l) for some di > 0, 
then for any A > 0 

lIxk -X+jIx < d2(3 + fl)P1(P+1) d2 = const(p, dl). 

Our final conclusion follows directly from this result and the previous lemma: 

Proposition. Under the conditions (i)-(iii), the successive approximations (4), 
with 

k=d1( a+ ( +1 IN -2(p+l) 

d i = constant and a defined in the previous lemma, will give Xk such that 

a .N+l I PA(P+0 
lIXk - X+11X < d2 + (1 2)1/2) 

where d2 = d2(P, d1). 

4. NUMERICAL EXPERIMENTS AND CONCLUSIONS 

The examples of this section will give a qualitative idea of the performance 
of the proposed scheme. We choose A. in such a way that the first iterate is an 
approximation for x+; this is possible since the first iterate is the Tikhonov 
regularization solution. In this case there are "a priori" estimates for A, as is 
shown in [3]. To stop the iterative process, we use a number of iterations k 
such that 

( 10) IIAXk - y6 || < Tol, 

where Tol = c16, cl > 0 and 3 from (2). The a posteriori stop rules are 
optimal but, in our case, they will demand excessive computational work. 

In the numerical experiments we simulated the noise, taking yb(s) = y(s) + 
e sin( lOOs), e > 0 and s E [1, 5]. The other parameters used in the examples 
are: N = the maximal degree of the polynomials in VN; k = the number of 
iterations required by the stopping criterion. 

Example 1. If y(s) = l/(s + 1.5)2, then x(t) = te-1'5'. The noise on the data 
was simulated using e = 10-2. The approximations were calculated taking 
N = 10. In this example, k = 2 iterations were required, i.e., x 2 (t) satisfies 

(1O) with Tol = 1.4 x 10-3 . The comparison between x(t) and X%20(t) is shown 
in Figure 1. 
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FIGURE 1. Example 1 

Example 2. If y(s) = arctan(l), then x(t) = sint/t. In this case we tested 
N = 10 and N = 15, with noisy data corresponding to e = 10-4. In the first 
case, k = 4 iterations were performed to obtain (10) with a Tol = 1.4 x 10-5. 
When N = 15, k = 3 iterations were required for a Tol = 1.4 x 10-. The 
results are shown in Figure 2. 

The error bound presented here, as well as in the above numerical computa- 
tions, encourage the use of the successive approximation method in the Laplace 
inversion problem. In different tests we got similar results, but especially good 
results were obtained when we used polynomials for x(t). 

The increase of the error for t > 5, exhibited in the figures, is compatible with 
the norm used to measure the error: the weight e-t allows these large absolute 
errors. On the other hand, Laguerre polynomials exhibit strong oscillations 
when N and t increase [1]; we believe that this fact also produces damaging 
effects. 
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FIGURE 2. Example 2 
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